BIOL. 2125/2126 MICROBIOLOGY FOR HEALTH SCIENCES
Prerequisites: CHEM 1107/1117 Chemistry for Health Sciences or equivalent

Course Description:
Introduction to microbial world, bacteriology, virology, mycology, parasitology, and immunology. Suitable for students planning a career or interested in health sciences.

4 Credits
Lecture (2 hours) ----------- BIOL 2125.21 W & F 12:00 – 12:50 PM
Laboratory (4 hours) DH 5512 BIOL 2126.21 W & F 9:00 – 10:40 AM
 BIOL 2126.22 W & F 1:00 – 2:40 PM
 BIOL 2126.23 T & TH 11:30 – 1:10 PM

Instructor: Dr. Alice Benzecry
Office: Dickinson Hall, Room 4416
Office Hours ☺: Thursday 9:00 to 11:00 AM / Friday 1:00 to 3:00 PM
Or by appointment
Phone # 692-2385 / e-mail: benzecry@fdu.edu

Requirement:
- Lab Coat: You must obtain a lab coat. Student without lab coat will not be admitted into the laboratory.
- Lab Notebook: A small composition notebook to be used exclusively for this class.

Course Objective:
Microbiology for the Health Sciences is an introductory course suitable for students planning a career in the health sciences. Students are expected to have some knowledge of basic chemistry and biology (at least one unit of high school biology). Students are introduced to the microbial world with emphasis on aspects of immunology, bacteriology, virology, mycology and parasitology which are relevant to the role of microorganisms in disease processes. The Laboratory will deal with the isolation and identification of common pathogenic and nonpathogenic organisms utilizing techniques of staining, culturing, fermentation reactions and microscopic inspection.
Student Learning Outcomes:
Upon successful completion of this course, students will be able to:

a. demonstrate their ability to integrate knowledge and ideas in a coherent and meaningful manner
b. demonstrate their ability to think critically
c. effectively express themselves in written and oral form
d. locate and use information
e. demonstrate their ability in the following laboratory skills:
 1. use of bright field microscope
 2. Properly preparing slides for microbiological examination
 3. Using properly aseptic techniques for the transfer and handling of microorganisms and medical samples.
 4. Working effectively in teams or groups so that the task, results, and analysis are shared by individuals and within a group

Course expectations:

a. **Attendance:** Students are required to attend all lecture and laboratory sections. Lateness or absence of greater than 10% is considered excessive and could result in a lowering of your course grade.

b. **Reading assignments:** Students are expected to read all assigned chapters and/or lab exercises prior to class.

c. **Class participation:** Participation in class discussion and in all laboratory activities is expected.

d. **Laboratory:** Students must follow all laboratory rules and protocols
 i. No student will be permitted into laboratories wearing shorts, halter tops, open toed sandals, undershirts or any other inappropriate attire. All students must wear **lab coats** when attending lab.
 ii. Students must bring their lab manual and lab notebook to every class.
 iii. Missed laboratory **can not** be made-up. You should consult your lab partner for the information missed and results

e. **Examinations:**
 i. Students are expected to answer multiple choice questions, filling and matching, and essay questions.
 ii. Dates of examinations are tentative except for the final exam.
 iii. You will be responsible for material covered in reading assignments and in lecture. You are also responsible for knowing the FDU policy on academic integrity and for strictly adhering to it.
 iv. **SHOW UP ON TIME.** Late comers will not be given extra time to complete their exam.
 v. Make-up examinations will be provided at the instructor’s discretion if there is a valid, documented excuse and if notification is provided within 24 hours of the schedule examination.

Additional information:

a. Tutorial assistance for this course is available through the Learning Center. Copies of the text book and other materials are in reserve at the Library. Students are strongly advised to take advantage of these resources.

b. The College regulations regarding cheating and plagiarism will be strictly enforced. Tape recorders are prohibited without written permission from instructor.
Grading and other methods for assessing student academic performance

Lecture .50%, Laboratory 35%, and group project 15%

- **Lecture Exams**: Three lecture exams (10% each)* (the lower grade will be dropped) unless otherwise stated each lecture exam will be given during the assigned (see lecture schedule) lecture period. Exam will test your knowledge of material cover in class since the last exam. You will be expected to answer multiple choice questions as well as essay questions.

- **Lecture Final Exam**: (20%) Exam will test your knowledge of material cover in class during the entire semester. It will comprise of 100 multiple choice questions. You must take this exam in order to complete the course.

- **Research Paper**: (10%) Each student will be required to compile a quick reference list of contagious diseases.

- **Lab Mid-Term Exam**: (15%) will consist of two parts: A written part which will include multiple choice, filling and short answer questions. and a practical portion where the student must perform specific laboratory techniques.

- **Lab Final Exam**: (10%) will include multiple choices, filling and short answer questions on material cover in the lab during the entire course

- **Lab reports and performance**: (10%) Competence in performing laboratory procedures, adherence to safety measures, and interpreting experimental results will be considered as part of your laboratory grade. Your instructor will base the evaluation on the following objectives:
 - Follow all safety rules stated in the laboratory manual.
 - Proper completion of select lab reports.
 - Demonstrate a working knowledge of the care and use of the microscope.
 - Use aseptic technique when handling cultures.
 - Demonstrate evidence of preliminary preparation (exercise outline) and organization when performing laboratory techniques.
 - Perform selected laboratory techniques safe and correctly.
 - Interpret laboratory results correctly.
 - Maintain records of all laboratory procedures, questions, explanations and experimental data obtained during lab – Lab notebook will be collected during the midterm and lab final exams.

- **Group Project**: (15%) Each group will be given a microbiology study case. Students must research background information and try to solve their case study based on laboratory test done by the group during Lab. Specific guidelines will be given to the students at the appropriated time.

YOU MUST PASS BOTH LECTURE AND LABORATORY TO PASS THE COURSE!

Final letter grade will be assigned accordant to the following grade scale.

A: 94-100% , A-: 90-93%
B+: 87-89% , B: 83-86% , B-: 80-82%
C+: 77-79% , C: 73-76% , C-: 69-72%
D+: 65-68% , D: 60-64% , F: ≤ 59

Any problem(s) you may have during this course should be communicated and/or discussed with the Instructor immediately, DO NOT wait until it is too late.
BIOL. 2125 MICROBIOLOGY FOR HEALTH SCIENCES - LECTURE OUTLINE

<table>
<thead>
<tr>
<th>Lecture Period</th>
<th>TOPICS</th>
<th>Assigned Text Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Microbiology:</td>
<td></td>
</tr>
</tbody>
</table>
| 2-3 | - Microbiology the Science, Scope of Microbiology
 - Historical developments and Role of Microorganisms | CHAPTER 1 |
| 4 - 5 | **The Chemistry of life:**
 Organic compounds - web. appendix 2
 Nucleic Acid Structure – DNA / RNA, Gene Structure and Genetic Code, Prokaryotic, Protein Synthesis. | CHAPTER 6 |
| 6 | **Cell Structure and Taxonomy:**
 - Taxonomy:
 Overview, Importance, System of classification, and Bacteria classification | CHAPTER 3 |
| 7-9 | - Overview of cells
 Eucaryotic cellular structures
 Procaryotic cellular structures | |
| 10 | EXAM 1 | CHAPTERS 1, 3, & 6 |
| 11-12 | **Diversity of Microorganisms and the diseases they cause**
 - Acellular microorganisms:
 o Viruses, Viroids, and Prions | CHAPTERS 4 & 17 |
| 13 | - Cellular microorganisms
 o **Domain Archaea** – Charateristics
 o **Domain Bacteria** – Characteristics | CHAPTERS 4 & 17 |
| 14 | o **Domain Eukarya** Algae and Protozoa, Fungi, and Helmenths | CHAPTERS 5 & 18 |
| 15 -17 | **Microbial Physiology and Genetics:**
 Prokaryotic DNA Replication: Bi-directional & Rolling circle Replication Ways in which bacteria acquires new information
 Metabolism: Respiration, Fermentation, Photosynthesis, Biosynthesis | CHAPTER 7 |
| 20 | EXAM 2) | CHAPTERS 4, 5, 7, |
| 18 - 19 | **Controlling the Growth of Microorganisms:**
 - **Growth** – Culture Media, Population Growth Curve
 - Factors influencing microbial growth
 - Physical and Chemical Antimicrobial Methods
 - Chemotherapy and bacterial resistance | CHAPTERS 8 & 9 |
<p>| | Interactions between Humans and Microbes | CHAPTER |</p>
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 21 - 22 | Indigenous Microflora and its beneficial roles.
Symbiotic relationships – Mutualism, Commensalisms, parasitism, neutralism and antagonism. |
| 23 | **Epidemiology**
- Epidermiologic Terminology
- Interactions among pathogens, hosts and the environment.
- Chain of infection
- Reservoir of infection
 - Living reservoir
 - Non-living reservoir
- Modes of transmission
- Bioterrorist and biological warfare agents
- Water supplies and swage disposal |
| 24 | Preventing the Spread of Communicable Diseases:
- Nosocomial Infections
- Control Measures and Control Procedures |
| 25 | **Diagnosing infectious diseases**
Pathogenesis of infectious diseases
Pathogenicity and host defense mechanisms
- Infections – four phases in the course of an infection
- Acute, subacute, and chronic diseases
- Pathogenesis of infection diseases
- Virulence and virulence factors. |
| 26 | Exam 3 |
| 27 | Human Defenses Against Infectious Diseases:
Non-specific Mechanisms of defense – First and second line of defense |
| 28 | - Immune Response – Third line of defense
- Immunodiagnostic procedures |
| | **FINAL COMPREHENSIVE EXAM** |
BIOL 1126 Microbiology for the Health Sciences
Laboratory DH 5512

Requirements:

- **Lab Notebook** Students must have a composition type notebook to be used exclusively for recording all laboratory procedures, questions, explanations and experimental data obtained during lab.

- **Lab Coat** Students will not be admitted into the Lab without a Lab Coat.

Students must follow laboratory rules and regulations at all times NO EXEPTIONS.

Laboratory attendance is mandatory. Students are responsible for all information given during lab periods. Due to the nature of this course, laboratory exercises can only be performed during the assigned lab period (no make-up). If a student misses a lab, he/she must obtain the giving information from a classmate.

Before each lab period, students must read the assigned material and write an outline to be delivered to the instructor prior to the Laboratory work. During lab, all material used, procedures, results and discussions must be recorded on the lab notebook. All microscopic observation must be recorded in the form of drawings on the lab notebook. Lab notebooks are going to be collected and graded during midterm and final exam periods.

After the completion of all laboratory exercises you will be given an unknown organism, which you will have two weeks to identify it. When the time comes, you will receive specific guidelines in how to do this project.

Students without Lab manual, notebook and/or lab coat will not be admitted into the laboratory.
<table>
<thead>
<tr>
<th>LAB</th>
<th>TOPIC</th>
<th>Assigned Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction Laboratory safety and Protocol.</td>
<td>Section 1</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Microscopy and Specimen preparation</td>
<td>Exercise 1, Chapter 2 (text book)</td>
</tr>
<tr>
<td>3</td>
<td>Preparation of Oral smears, Simple staining, and Wet Mount</td>
<td>Exercises 2 & 3</td>
</tr>
<tr>
<td>4</td>
<td>Survey of the microbial world:</td>
<td>Section 3 - Exercises 10, 11, 12, Chapter 5 (text book)</td>
</tr>
<tr>
<td>5</td>
<td>Distribution of Microorganisms in the Environment:</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Protista: algae and protozoa</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Introduction to parasitology</td>
<td>Section 14</td>
</tr>
<tr>
<td>8</td>
<td>Helminthes</td>
<td>Exercise 66</td>
</tr>
<tr>
<td>9</td>
<td>Differential Staining Techniques:</td>
<td>Section 4 – Exercises 2, & 14, Chapters 3 & 4 (text book)</td>
</tr>
<tr>
<td>10</td>
<td>Gem staining and Acid Fast Stain</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Capsule, flagella, and endospore staining</td>
<td>Section 5 – Exercises 15A, 16, 17 & 18</td>
</tr>
<tr>
<td>12</td>
<td>Cultivation techniques:</td>
<td>Section 2 – Exercises 4 & 5</td>
</tr>
<tr>
<td>13</td>
<td>Transfer and Colony Selection techniques; Isolation of pure cultures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Pour plate and Streak Plate)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Biochemical activities</td>
<td>Section 6 – Exercise 20 + HAND-OUT</td>
</tr>
<tr>
<td>15</td>
<td>Differential and selective media</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Extracellular degradation of polysaccharides, proteins, lipids, and DNA.</td>
<td>Exercise 21</td>
</tr>
<tr>
<td>17</td>
<td>Intracellular Metabolism – Carbohydrate metabolism. Triple Sugar Agar Reaction</td>
<td>Exercises 22, & 26B</td>
</tr>
<tr>
<td>18</td>
<td>Nitrogen metabolisms, Oxygen utilization: Oxidase and Catalase, IMViC test and Litmus milk</td>
<td>Exercises 23, 24, 25, & 26</td>
</tr>
<tr>
<td>19</td>
<td>Enterotube®II System</td>
<td>Exercise # 27 B</td>
</tr>
<tr>
<td>20</td>
<td>Control of Microorganisms by Chemical and Physical factors:</td>
<td>Section 7 – Exercises 29A, 31, 32A, 33, & 37</td>
</tr>
<tr>
<td>21</td>
<td>Heat, pH, Osmotic pressure, Disinfectants, Heavy metals, & Antibiotics</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Ultraviolet Radiation</td>
<td>Exercise 30</td>
</tr>
<tr>
<td>23</td>
<td>Results and review</td>
<td></td>
</tr>
<tr>
<td>24-28</td>
<td>LAB EXAM UNKNOWN ID</td>
<td></td>
</tr>
</tbody>
</table>