FAIRLEIGH DICKINSON UNIVERSITY
SONS -CHEMISTRY (TEANECK CAMPUS)

Course: Instrumental Methods of Analysis Lecture (CHEM-4233) 3 credits
Level: Undergraduate
Instructor: Dr. Arthur R. Murphy
Office: Dickinson Hall Room 4413
Phone Number: (201)-692-2322
e-mail: arthur_murphy@fdu.edu
Office Hours: M 10:00 AM – 11:50 AM
F:10:00 AM – 11:00 AM
and by appointment.
Semester: Spring 2009
by Skoog/Holler/Crouch
Classroom, Day and time: EWC 202, Monday 5:25 PM – 8:00 PM

2008 – 2010 Catalog Description:
Theory and applications of absorption, emission and interpretative spectroscopy, electrochemistry
and chromatography to problems of chemical analysis. Introduction to interfacing, data acquisition and data
manipulations.

Intended Audience:
This course is designed for students majoring in chemistry. Students majoring in other Natural
Sciences may also find the course of interest.

Teaching Methodologies:
The course employs both traditional lectures involving board work and overheads as well as
microcomputers. WEB resources will also be utilized where appropriate.

Course Objectives and Outcomes:
Objective 1: Students should understand the principles and applications of atomic and molecular
spectroscopy.

Outcome 1.1: Students should know the various regions of the electromagnetic spectrum and the
instruments, techniques, and major applications used in these areas. They should
have a firm foundation in visible, UV, and IR spectroscopy

Outcome 1.2 Students should understand the instrumentation, techniques, and applications of
fluorescence spectroscopy.

Outcome 1.3 Students should understand the instrumentation, techniques, and applications of
Atomic Absorption spectroscopy.

Objective 2: Using computer software and WEB resources, the principles of Interpretive Spectroscopy will
be reviewed and broadened.

Outcome 2.1 Students should know how to interpret elementary IR, NMR, and Mass Spectral data.

Objective 3: The principles of Instrumental Measurements will be presented.

Outcome 3.1 Students should have an appreciation of electronic components and basic circuits.

Outcome 3.2 Students should understand digital and analogue signals, and they should have an
introductory knowledge of digital electronic, operational amplifiers, as well a signals
and noise.
Objective 4: If students already have good backgrounds in Electrochemistry from their Analytical Chemistry course, this section will be skipped in favor of Miscellaneous Instrumental Analysis Techniques. (see objective 6 below). Otherwise, aspects of Electroanalytical Chemistry will be reviewed and broadened.

Outcome 4.1 Students should understand the basic principles of potentiometry.

Outcome 4.2 Students should understand the basic principles of Coulometry and Voltammetry

Objective 5: If students already have good backgrounds in Separation methods from their Analytical Chemistry course, that material will be omitted in favor of miscellaneous Instrumental Analysis Techniques (see objective 6 below). Otherwise, aspects of Chromatography will be reviewed and broadened.

Outcome 5.1 Students should understand the basic principles of Chromatographic separations.

Outcome 5.2 Students should be familiar with the instrumentation used for Chromatographic methods.

Objective 6: Various miscellaneous topics in Instrumental Analysis will be presented. Possible topics may include Higher Derivative Spectroscopy, Simplex Methods, radiochemical methods, thermal methods, Scanning Tunneling Microscopy, or

Outcome 6.1 Students should become familiar with the instrumentation, and applications of the chosen method(s).

Tentative Lecture Schedule (Spring 2009)

<table>
<thead>
<tr>
<th>Week #</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan. 26</td>
<td>Chapters 6,7
Electromagnetic Radiation and Introduction to Optical Spectroscopy (Components of Optical Instruments)</td>
</tr>
<tr>
<td>2</td>
<td>Feb. 2</td>
<td>Chapters 13 and 14
UV/Vis and Applications</td>
</tr>
<tr>
<td>3</td>
<td>Feb. 9</td>
<td>Chapter 15
Fluorescence and Applications
Chapters 8, 9, and 12
Intro to Optical Atomic Spectroscopy and Atomic Absorption and Applications, Atomic X-Ray Spectroscopy.</td>
</tr>
<tr>
<td>4</td>
<td>Feb. 16</td>
<td>Chapter 16
Interpretive IR</td>
</tr>
<tr>
<td>5</td>
<td>Feb. 23</td>
<td>Exam #1</td>
</tr>
<tr>
<td>6</td>
<td>Mar. 2</td>
<td>Chapters 17 and 19
Interpretive NMR</td>
</tr>
<tr>
<td>7</td>
<td>Mar. 9</td>
<td>Interpretive NMR (continued)
Chap. 20 Mass Spectroscopy. Student presentation topics must be selected.</td>
</tr>
<tr>
<td>8</td>
<td>Mar. 16</td>
<td>Spring Recess</td>
</tr>
<tr>
<td>9</td>
<td>Mar. 23</td>
<td>Miscellaneous Methods
Perhaps Higher Derivative Spectroscopy, Simplex Methods, etc.</td>
</tr>
<tr>
<td>10</td>
<td>Mar. 30</td>
<td>Exam #2</td>
</tr>
<tr>
<td>11</td>
<td>Apr. 6</td>
<td>Highlights of Chapters 2,3,4,5
Basic Measurements – Some analogue and digital electronics</td>
</tr>
<tr>
<td>12</td>
<td>Apr. 13</td>
<td>Highlights of Chapters 22,23,24,25
Electroanalytical Chemistry, (perhaps radiochemical methods – Chap 32)</td>
</tr>
<tr>
<td>13</td>
<td>Apr. 20</td>
<td>Highlights of Chapters 22,23,24,25
Electroanalytical Chemistry (continued)</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Apr. 27</td>
<td>Highlights of Chapters 26, 27, 28 Separation Methods</td>
<td></td>
</tr>
<tr>
<td>May 4</td>
<td>TBA</td>
<td></td>
</tr>
<tr>
<td>May 11</td>
<td>Final Exam</td>
<td></td>
</tr>
</tbody>
</table>

Procedures, Policies, and Expectations

1) The last day for withdrawing from the course with a grade of "W" is April 3, 2009
2) All homework assignments must be submitted on time. Late assignments will not be accepted.
3) During lecture all cell phones and pagers must be turned off.

Grading Policy

- Exams - 50%
- Homework - 50%